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BABINET'S PRINCIPLE FOR AN ANISOTROPIC RESISTIVE SURFACE

USING DIFFERENT APPROACHES

INTRODUCTION

A rigorous vector formulation of Babinet's principle for electromagnetic

waves is very useful in simplifying many microwave diffraction problems.

Copson [1] formulated a rigorous statement of Babinet's principle for dif-

fraction of electromagnetic waves by an aperture in a perfectly conducting

screen and its complementary surface (a conducting disc). Recently, Elliott

[2] presented a review of Copson's work in a manner easily understandable to

engineers and scientists. In addition to providing a rigorous statement of

Babinet's principle, this analysis displays some important symmetry (odd and

even) properties of electromagnetic fields with respect to the thin diffract-

ing screen. Introducing such concept of symmetrical (i.e., with even sym-

metry) and unsymmetrical (i.e., with odd symmetry) excitations of electromag-

netic fields, Collin [3] rederived the Babinet's principle. In this deriva-

tion it is not necessary to know the explicit expressions of scattered fields

in terms of surface integrals containing equivalent induced surface current

(electric or magnetic). Such expressions can be found in references (1) and

(2). In an analogous manner, advancing the properties of image fields, Jones

[4] also presented the relationships associated with Babinet's principle.

Although these various approaches are interrelated, they can provide better

insight into understanding the principle involved and may help in devising

different experiments for the same purpose. A comprehensive list of refer-

ences on this subject can be found in [4].

Manuscript approved May 24, 1985.
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The preceding discussion on the various methods of derivation of

Babinet's principle is associated with diffraction or scattering of electro-

magnetic waves by a conducting screen with apertures and the corresponding

complementary surface consisting of conducting disks having the same size and

shape of respective apertures. However, over the years interest has also

been shown in extending this Babinet's principle to absorbing and resistive

surfaces [5,6,7]. This has important applications in reducing reflections of

electromagnetic waves. Neugebaur [5) considered an absorbing surface, whereas

Lang [61 studied a resistive surface. Lang took the complementary surfaces

as a perfectly conducting screen with a resistive insert and a resistive

screen with a perfectly conducting insert. In his attempt to extend Babi-

net's principle to resistive surfaces, Lang followed the method used by Jones

[4], but the derivation has been criticized [8] for the assumptions made

involving the normal components of the field. It appears that Baum and

Singaraju [91 have also considered resistive sheets in an unpublished work.

Applying the same idea [9] in mind Senior [7] extended Babinet's principle to

diagonally anisotropic and inhomogeneous resistive sheets with the appropriate

complementary problems. In this derivation Senior assumed the usual symmetry

properties [1,21 of electromagnetic fields.

The present work also gives a derivation of Babinet's principle and

the appropriate field relations for a resistive surface which is anisotropic

and may be a function of position of the coordinates of the surface. Unlike

the resistive sheet (or surface) considered by Senior, the anisotropic resis-

tive sheet treated here has non-zero off-diagonal terms. A relation between

this anisotropic (or dyadic) resistivity and that for its complementary sur-

face is also derived. The method used parallels Senior's. In addition, we

have extended Collin's technique to include the effect of such anisotropic
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resistive sheets on Babinet's principle. Since Jones' approach is equally

valid, although Lang made an error as mentioned earlier, this procedure is

also used to generalize the result for anisotropic and inhomogeneous resis-

tive sheets. Even though these various methods are interrelated, they offer

an opportunity to look into this problem from different perspectives and thus

provide a better insight which may help in setting up experiments in dif-

ferent ways. Since all of these methods use some well known basic properties

which are important in diffraction or scattering of electromagnetic waves,

(such as odd and even symmetry), they are reviewed for the clarity of presen-

tation.

SOME BASIC PROPERTIES OF THE ELECTROMAGNETIC FIELD

Consider the following time-harmonic Maxwell's equation in a source free

homogeneous medium.

4. *

V x E - iWUH (1a)

V x H - -iwCE . (Ib)

The assumed time dependance exp(-iwt) is suppressed for convenience. If E

and H satisfy the Maxwell's equations (La) and (1b), so also the set Ec, Hc
.* +

which are related to E, H in the following manner.

Ec -/ 7 H - + ZH (2a)

_c = E - + YE. (2b)

where i 7/e Z = I/Y is the intrinsic impedance of the homogeneous

medium. In the derivation of Babinet's principle the concept of comple-

mentary problem and its associated field is essential. If the field E, H

refers to the original problem, then the field Ec, Hc satisfying (2a) and

3
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(2b) represents the corresponding complementary problem. The subscript c is

then introduced to designate the complementary field. The sign convention in

(2a) and (2b) depends on the problem at hand. This will be discussed in

appropriate places. The relations (2a) and (2b) are also known as duality

properties.
4. +

It follows from the source free Maxwell's equations that E and H satisfy

the following divergence equations.

VE - 0 and V.H - 0 (3)

In a rectangular or a general cylindrical coordinate system, if z is

assumed to be the preferred direction of propagation, then it will be found

convenient to express, E, H and V in the following manner.

+ +

0zE -E t  + z0  Ez

+ + (4)
H - Ht + zo Hz

V = Vt + zo a

where zo is a unit vector in the z direction. The subscript t refers to the

components transverse to z. E. and Hz are the respective z components. Then

the relations in (3) may be expressed as

+

VtEt + 3 E z = 0 (5a)

4z

VtH t + a Hz - 0 (5b)

Futhermore, it follows from Maxwell's equations that

iWijHt = -io x VtE. + i0 x 3 Et (6a)
az

-iwe Et -zo X VtHz + z0 x 3 Ht . (6b)
3z
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It is evident from (5a) that if Ez is an even (odd) function of z,

then Et is an odd (even) function of z. In view of (6a), one then finds

that when Ez is an even (odd) function of z, so also Ht. Similarly,

from (5b) and (6b) one can conclude that when Hz is an even (odd) function

of z, so also Et, however, Ht is an odd (even) function of z. Therefore,

when Ez and Ht are odd (even) function of z, the fields Hz and Et are even

(odd) function of z. Excitation which creates odd (even) Et and Hz (together

with even (odd) Ht and Ez ) is also known as odd (even) or unsymmetrical

(symmetrical) excitation. For example, the incident and the specularly

reflected fields from a very thin perfectly conducting infinite plane (which

may contain apertures) parallel to x-y plane at z = 0, are related to each

other by odd symmetrical property with respect to z, i.e.,

+i + +r + i + r +

Et(p,z) = -Et(p,-z), Ez(p,z) - Ez(p,-z) (7a)

+i + +r+ i + r +
Ht(p,z) = Htp,-z), Hz(p,z) - -Hz(p,-z) (7b)

where the superscripts i and r refer to the incident and the specularly

reflected fields respectively. The vector p represents coordinates trans-

verse to z. On the otherhand, the diffracted or scattered fields in the two

regions z>0 and z<0 (due to the presence of an aperture on the conducting

screen) are related via even symmetry, i.e.,

+ 9 + S 
+  S + +

E2t(P,z) = Elt(p,-z), E2z(p,z) = -EZl(p,-z) (8a)

+ S + + S +S
+  

9 +

H2 t(P,z) = -Hlt(P,-z), H 2 z(P,z) = Hlz(P,-z) • (8b)

5
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The superscript s refers to the scattered fields (which also include the

diffracted fields). The subscripts I and 2 designate fields in the regions

z<O and z>O respectively. More about odd and even symmetrical fields will

be discussed later on.

BABINET'S PRINCIPLE USING UNSYMMETRICAL AND SYMMETRICAL EXCITATIONS

Let us consider an electrically thin resistive sheet occupying the

entire plane z = 0 described by a rectangular coordinate (x,y,z) or any other

cylindrical coordinate systems (p,z). The normalized resistivity R is a

dyadic with non-zero elements in general. The elements of the resistivity

tensor (or dyadic) may be functions of coordinates of the surface. The

form of R is given by

ERI R1 2  I..
= xox0 R1 1 + xoy0R1 2 + Y 0x0 R 2 1 + y0Y0R22 (9)

LR21 R22]

where , yo and z0 are unit vectors in the x, y, and z directions, respec-

tively.

The procedure adopted here will generalize the technique used by Collin

[3] introducing unsymmetrical (odd) and symmetrical (even) excitations. We

consider first unsymmetrical excitation.

Let E l be an incident field originated from the region z<O, and E l be

the corresponding specularly reflected field. The region z>O is also excited

+i
by another incident field E2 , such that

i + r + + , ) i +

E2(P~z) Ej(p,z) and E 2 P,z) E1 (pz) (10)

r

where E2 is the specularly reflected field created by the incident field
+i

E2 in the region z>O. Then the complete unsymmetrical excitation can be

represented in the following manner.

6
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+ i+ r

ElO - E l + E l  (Ila)
z<O

+ +i +r
H1O - HI + Hl (lib)

and

+ *i +r

E20 - E2 + E2  (12 a) -

z>O
+ +i +r -

H20 - H2 + H2 . (12b)

The subscript 0 indicates the fields belonging to odd (or unsymmetrical)

excitation. The subscripts 1 and 2 designate regions z<O and z>O, respec-

tively. In addition to the relations (10), the fields in (Ila) to (12b) have

the following properties (dropping the transverse coordinates p for expedi-

ency).

+i +r +r +i -

H2 (z) = Hj(z), H2 (z) = HI(z) (14 a)

+i i
E 2t(z) -Elt(-z), E 2 z(z) = EIz(-z) (14b)

+i +i
H2 t(z) Hlt(-z), H2z(z) -Hlz(-Z) (14 c)

+ r + i + i + ri

Elt(z) - -Elt(-z) - E 2 t(z) - -E2 t(-z) (14d)

r i i r
Elz(z) - Elz(-z) = E2 z(z) E 2z(-z) (14 e)

+ r +*i + I + r

Hit(z) - Hlt(-z), H 2t(z) = H2t(-z) (14f)

r i i r'

Hlz(z) - -Hz(-Z) = H2z(z) = -H2z(-z) . (14g)

Since this odd excitation consists only of incident and specularly

reflected fields in each side of the surface, the relations in (14) show that

the surface behaves like a perfect conductor.

7
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If we call the fields given by (11a) to (12b) as the unsymmetrical

fields for the original problem, then the corresponding unsymmetrical fields

associated with the complementary problem can be generated from the original

fields by using the transformations (2a) and (2b) in the following manner.

The lower signs in (2a) and (2b) should be taken for waves propagating in the

positive z direction; whereas the upper signs belong to waves propagating in

the negative z direction. Note that this choice is not arbitrary. It is

necessary for the proper continuity of the complementary fileds at z = 0,

i.e., the tangential components of EIo c and E20c at z = 0 are continuous,

where Eloc and E20c are the total unsymmetrical (odd) complementary electric

fields in regions I and 2 respectively. Thus, the unsymmetrical complemen-

tary fields can be expressed in the following manner:

+ +i +r
ElOc = -Z[HI - H11 (15a)

z<0

+ +i r

HIOc = Y[E -Ell (15b)

+ i +r
E20c - Z[H 2 - H2] (16a)

z>0

+ +i +r
H20c = -Y[E 2 - E2] (16b)

Superscript c refers to fields for the complementary problem.

We shall now construct the field components for symmetrical (even)

excitation. In this case the total field in each region (z<O and z>O) con-

sists of the incident field, the corresponding specularly reflected field and

the scattered field which obeys the even symmetry. Thus, the even symmetric

fields are given by

8



introduced previously in sections (3) and (4). For this so called magneti-

cally conductive surface, the tangential magnetic field is continuous, but

there is a discontinuity in the tangential electric field. This surface

supports a magnetic current. The boundary conditions on the surface are

given by the following expressions [7].

z0 x H2(+O) - z0 x Hl(-O) = z0 x Ht(
0) (57a)

YR*' [E 2 (+O) x z0 - E 1(-0) x z O] -Ht(+O) Ht(-O) • (57b)

Note that in this case the situations *=0 and R* = represent respec-

tively a "perfect ferrite" with infinite permeability and the absence of this

surface. Here also R* has non-zero off-diagonal terms.

For a combination resistive-conductive sheet, the fields on both sides

of the sheet are obtained by combining (56a) and (57b) in the following way

[7].

2ZR.{z 0 x [H2t(+o) - Hjt(-0)I} - E2t(+o) + Elt(-O) (58a)

2YR*'{[E 2t(+O) - Elt(-O)I x ;01 = H2t(+O) + Hlt(-O) • (58b)

If we now require that the fields on each side of the sheet must satisfy

impedance boundary conditions separately (see relations (60)), then the

following relation between ; and R* can be established.

= =T -T
R* = R .[4 det R* - R /(4det RI (59)

which is very similar to (40). The condition (59) then implies the follow-

ing relations.

Hlt(-O) - -2YR*.[Elt(-O) x zo] (601)

H2t(+O) - 2YR*[E 2t(+O) x zo] (6Oi)

22
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with respect to the coordinate z, it can be shown [1,2] that for the computa-

tion of the scattered fields (including diffracted field) one needs only one

type of source currents (i.e., either electric current Js or the magnetic
+

current Ms). Then the scattered field can be derived [1,2,7] by using the

Hertz potential. In this way the scattered fields are expressed by the

surface integrals (44) and (45). Mo-e about this will be discussed later.

In this section we generalize Senior's results [71 by including the off-

diagonal terms of the normalized dyadic (or tensor) resistivity R, the form

of which is shown in (9). Here also we shall outline the method without much

repetition of the results already given elsewhere in this paper.

For a resistive sheet (whether it is isotropic, anisotropic or inhomo-

geneous) the tangential electric field is continuous, whereas there is a

discontinuity in the tangential magnetic field, indicating that the surface

supports electric current. Therefore, the electromagnetic field satisfies

the following resistive boundary conditions on the surface.

z0 x E2 (+O) =z x El(-O) z0 x Et(O) (56a)

Z;°[z 0 x H2(+O) - z0 x Hl(-O)I io x Et(O) x 0= Et(O) - (56b)

As before, (El, HI) and (E2 , H2) are the fields in the region z<O and

z>O, respectively. The dyadic R is the normalized resistivity as shown in

(9). In particular, the situations R - 0 and R = represent prefectly con-

ducting surface and the absence of any material surface respectively. The

dual of this surface is a "magnetically conductive" surface with conductivity

YR* mhos per square meter. Note that R* is not the complex conjugate of R.

This surface may be considered as the second kind of complementary surface.

The other complementary surface, represented by its resistivity ZRc was

21
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Furthermore, letting z+O the conditions (51a) and (51b) can be used to

derive the behavior of the various components of the field at the resistive

surface. In this way it can be shown that the field satisfies the conditions

already presented in Eqs. (32a) to (33b).

Noting that the expressions (52a) to (52d) provide the fields for the

original scattering or diffractions problem, the fields for the complementary

problem can be constructed in the following manner

" H - i - H1] (55a)
z<O

+ +i

Hic- Y[Ej - E1] (55b)

+i r +i r
where El - El, and HI = H1

+. + +j
E2c Z[H 2 - H1] (55c)

z>O
+ +i +

H2c = Y[E 1 - E21 (55d)

It can easily be shown that these equations are equivalent to those

given by (28a) to (29b). The resistive boundary condition and the cor-

responding complementary boundary condition are the same as given by (34) and

(37) respectively. Similarly, other properties and relations of the various

fields can be found in the previous section.

BABINET'S PRINCIPLE USING SCATTERING THEORY

It has already been mentioned that the scattered field is created by the

induced surface currents on the resistive infinite screen. These surface

currents are related to the total tangential fields on the surface. By using

the odd and even symmetry of the various components of the scattered fields

20
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-~ + .+I
EMZ + EI(z) - Ej(z) + E1(z) (51a)

+ + + i +1.
H(Z) + 111(z) -Hj(z) + 111(z) .(5ib)

Let us now write

+ +I +r +
Ej(z) -Ej(z) + Ej(z) + E1(z) (52a)

z<O

Hj(z) - Hj(z) + Hj(z) + Hj(z) (52b)

+ +S
E2(z) -E 2(z) (52c)

z>O
+9 +5

H2(z) - H2(z) (52d)

-I
E11 (z) -E 11(z) (53a)

z<O
+. + S

H11 (z) - H11(z) (53b)

+9 +I +9r +

E12(z) - E2(z) +- E2(z) + E12(z) (53c)
z>O

+ +i +r + S
H-12(z) - H2(z) + 112(z) + H12(z) . (53d)

+I +Ij +i +j

When both the incident field (E19Hj) and its image (EI, HI) are present

simultaneously, then the conditions In (51a) and (51b) imply that the

resultant scattered field vanishes everywhere. In otherwords one finds

+S +9
Ej(z) +- E11 (z) - 0 (54a)

Z(0

1Ii(z) + H11(z) - 0 (54b)

E2(z) + E12(z) -0 (54c)
Z>0

*8 +S

H2(z) + H12(z) - 0 .(54d)

19



Therefore, when these fields are present simultaneously, they constitute the

unsymmetrical excitation represented by (Ila) to (12b).
4. +

Consider now the total field (Er, HI ) created by the incident image
+i +i + +

field (El, HI). The field (EI, HI) may be expressed as

+ Ell(z), z<O (49a)
E+2(z) , z>O (49b)

+ HIl(z), z<O (49c)HI +

H2) , z>O .(49d)

Since the field (El, HI ) is the image of (E, H) given by (47a) to (47d),

the combination represent unsymmetrical solutions of Maxwell's equation,

i.e.,

El(z) - EIt(z) + zOEIZ(z) - -Et(-z) + zoEz(-z) (50a)

Hl1(Z) = Hit(z) + zOHiz(z) - Ht(-z) -oH,(-z) • (50b)

+i +i +i +i
If the incident field (El, H) and its image (El, HI) exist simultaneously,

the gross total field is obtained by adding the two separate total fields

(E, H) and (E1 , HI). Since the combined field due to the original incident

+i +i +i +i
field (El, Hl) and its image (E1 , HI) satisfies the boundary condition on the

resistive sheet (and the edge condition if there is any), the resistive sheet

could be removed. This implies that the resultant field created by the

+i +i +i ioriginal incident field (El, Hl) and its image (El, HI) is exactly the same

as if the screen were not there. This statement is mathematically equivalent

to the following relations.

18
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BABINET'S PRINCIPLE USING IMAGE THEORY

In principle, the technique to be used here is similar to that presented

by Jones [4]. The screen is an anisotropic resistive sheet as descirbed in

the previous Section 3. Since many of the results which can be derived by

using this method, are the same given in the preceding section, they will not

be repeated. Therefore, we shall simply outline the procedure and whenever

possible refer to the results obtained previously.

+i +i
Let (El, H I ) be the field incident from the region z<O. This incident

+ 4.

field then creates a total field (E, H) which may be expressed as

+

+ Ej(z), z<O (47a)
E +

E2 (z), z>O (47b)

+ Hi(z), z<O (47c)
H +

+H12(z), z>O . (47c)

+i +i
Assume further that the field (El, HI), the image (i.e., mirror image)

+i +i
of the field (El, HI), is also present. The subscript I indicates image.

+i +i +i +i
Since the field (El, H I ) is incident from z<O, its image field (EI, HI ) may

be regarded as the field incident from z>O. Let us then write

+i +i +i +i
El = E2 , HI = H2  (48)

which are fields incident from z>O.
+r r

Let (El, Hl) be the specularly reflected field in the region z<O,

+i +i r r
created by the incident field (EL, HI). Similarly, the field (E2 , H2 ) is the

+i +i +i
specularly reflected field caused by the image incident field (E1 - E2 , HI

+i
H2 ). Then these fields satisfy the relations (10) and (14a) to (14g).

17
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due to the incident fields, are unknown. Formal expressions of these scat-

tered fields in terms of the induced surface current, which is also unknown,

can be derived in the following manner.

Let Ms(Q) E Zt(p,O) x z0  (43)

Ms(p) is equivalent to a surface magnetic current and Et(p,O) is the

same tangential electric field at z - 0 defined by (32a). Then it can be

shown [1,2,71 that

+S + + + + + +S

El(p,z) = -2ffMs(p') x Vg(r,r')dx'dy' - -E2(P,z) (44)

+S + + + 2 +S +
H1(p,z) - -2ikYff[Msg + (Ms.V)Vg/k ]dx'dy' = -H2 (p,z) . (45)

Intergration in (44) and (45) is over the entire surface at z = 0.

4. 4

++ eiktr -r_ _

g(r,r') + . r = x2+y2+z2 , rA = VX-2+y 2 , k = wVUF- (46)

4wir xy I

where (x,y,z) refers to observation point and (x',y') denotes a point on

the resistive surface at z - 0.

Note that the integral representations (44) and (45) of the scattered

fields satisfy the symmetry conditions shown in (8a) and (8b). It may be

pointed out that the mathematical statement of Babinet's principle given by

(28a) to (31b) differs from that provided by Collin [3). The reason may lie

in the manner in which the symmetrical excitation is derived by Collin.

The symmetrical excitation represented by Eqs. (17a) to (18b) displays
+r +r +r

explicitly the presence of the specularly reflected fields, El, E2 , H1 , and
+r

H2 . However, the corresponding expressions given by Collin do not show them.

It appears that Collin absorbed these quantities in his definition of various

scattered fields.
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where Ect(0) is defined by (36a) and R. is given by

i" llc R12C

;c R R2 2 J xx0RIc + x0Y0R1 2c + y x0R2 1c + Y0Y0R2 2c " (38)

The boundary condition (37) may also be re-expressed as

H2ct(+O) -Hct (-0) - -2YEt(O) -2YEt(-0)
(39)

- Y[(Rc) Ect(O)] x Z0

Combining now (35) and (39), the following relation between R and Rc

can be established.

= T =T
Re - R /14 det R] - R .[4 det Rc]  (40)

where R is the transpose of R and

det R R1 1R2 2 -R1 2R2 1 = determinant of R (41a)

det " RiiCR22 c -Rl2cR2 1c = determinant of Rc (41b)

The relation (40) may also be expressed explicitly in the following

form.

Rjl/RIlc R2 1 /Ri2c R22/R22c R12/R21c = 4(det R) (42a)

4(detR) 1/(4det ;c . (42b)

In equations (24a) to (24b) the incident and the corresponding specu-

larly reflected fields are assumed to be known. However, the scattered

fields, which are the fields radiated by the currents induced in the surface
.

15
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where R is given by (9) and Et(O) is defined by (32a). It will be found con-

venient to re-express (34) in the following way using (33a).

H2t(+O) - Hit(-O) = Y[(R) "Et(O)1 x i0
(35)

- 2[Hlt(O) - Hlt(-O)j *

From Eqs. (26a) to (27b) and the relations (32a) to (32e), behavior of

the complementary fields at the surface z = 0 can be expressed as follows.

+ + + 1 4 +

Elct(-O) = Z[H 2t(+O) - HIt(O)] = E2ct(+O) = Ect(0)
(36a)

Z + +

- 2 [H2t(+O) - Hlt(-O)]

i
Elcz(-O) - Z(Hjz(0) + Hlz(-0)] (36b)

i
E2cz(+O) - Z[H 2z(+O) - Hlz(O)] (36c)

S+ + + i

Hlct(-O) - Y[EIt(-O) + Elt(0)] (36d)

i
Hlcz(-O) = Y[E 1 z(-O) - Elz(0)] (36e)

II +c( i +
2ct(+O) Y[EIt(0) - E2t(+O)I (36f)

i
H2cz(+O) = Y[Eiz(O) - E2z(+O)] • (36g)

The above relations show that Ect and Hcz are continuous across the

. surface at z - 0, whereas Hct and Ecz are discontinuous.

Let ZRc be the resistivity of the complementary surface which may be

viewed as an anisotropic conductive sheet. Then the complementary fields

satisfy the following boundary condition.
[- , .... 4

Zcs Z0 x {H2ct(+O) - H ict(-0)1l Ect(O) (37)

14
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Alternatively, Babinet's principle is sometimes expressed as

+ g S + i
E1 - ZHIc = ZHIc - g I  (30a)

+S S + +i
H1 - -YEIC =-YEIc - H1  (30b)

*" + + S + +i
E2 - E2 -- ZH2c - -ZH2c + El  (31a)

z<O
+S + + S + +i

H2 - H2 - YE2c - YE2c + H1 . (31b)

Using the symmetry (i.e., even) property of the tangential scattered electric

fields, the following behavior of the fields given by (24a) to (25b) at the

surface z = 0 can be established.

+ + S + S + +

Elt(z -0) Elt(-O) = E2t(+O) = E2t(+O) Et(0) (32a)

i s
EIz(z -0) 2Eiz(O) + Elz(-O) (32b)

+ +i + S
H1t(z = -0) = 2H t(0) + Hlt(-O) (32c)

S S
HIz(z - 0) Hlz(O) H2z(+O) = H2z(+O) (32d)

+ + S + S

H2t(z = + 0) - H2t(+O) -Hlt(-O) . (32e)

Alternatively, one may write

+ ++
H2t(+O) + Hit(-O) - 2Hlt(O) (33a)

i
E2z(+O) + Elz(-O) = 2Elz(0) . (33b)

The resistive boundary condition may now be expressed as

- 4 -. 4

Z A.[z0  f{H2t(+O) -Hlt(-0)}= Et(0) (34)

13
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Note that the relations (24a) to (25b) provide the formal representa-

*tions of the fields associated with the scattering or diffraction of the

+i +i
* field (El, HI) incident from the region z<O on an anisotropic and inhomo-

, geneous resistive thin surface at z = 0. Since we have not imposed the

boundary conditions explicitly at the surface z = 0, the expressions (24a)

to (25b) are also valid for an infinite conducting plane (at z = 0) with

apertures. Although no boundary conditions are applied at z - 0 explicitly,

*. the superposition of the symmetrical and unsymmetrical fields implies the

continuity of the tangential components of El and E2 at z - 0. If we

*. designate the fields represented by (24a) to (25b) as the fields associated

with the original diffraction or scattering problem, then the fields given by

(26a) to (27b) represent the corresponding complementary problem. Further-

i +i
• .more, if the field (El , H1 ) represent the source of the original problem,

4i +i
then the field (-ZH,, YE1 ) is the source of the complementary problem. The

+i +i
latter source field can be obtained by rotating the former (i.e., El, H1 )

-* through 90* in the plane parallel to the screen.

The formal relationship concerning Babinet's principle can he obtained

by connecting (24a), (24b) with (26a), (26b) and (25a), (25b) with (27a),

(27b). Thus, we have the following relations expressing Babinet's principle.

El - ZHIc - E1  (28a)
z<O

+ + r
H1 + YEjc - H1  (28b)

+ + +r +i
E2 + ZH2c E2 =E 1  (29a)

z>O

+ + r +i

H2 - YE2c - H2 - Hi (29b)

12
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H1  = 1/2 [H 0 + Hie] (23c)

i +S ;S

Hl = 1/2 H2  (23d)

Elc- 1/2 [EIo c + Elec ]  (23e)

+ S So
Elc - 1/2 Elc (23f) '

8 48

HIc 1/2 [HIO c + Hiec] (23g)

Hic 1/2 HIc * (23h)

Similiar expressions with subscript 2 represent fields for the region

z>0. We now add (11a), (17a) and then dividing by 2 obtain the following

expression where use has been made of (23a) and (23b).

+ +i +r +s
Ei - Ei + El + E (24a) z<O

In a similiar way the following expressions can be obtained.

+ +i +r +S
H1 - HI + Hl + HI  (24b) z<0

E2 E2  (25a)
z>O

+ +S

H2 = H2  (25b)

+ +i +S
Elc -Z[H 1 + H1 ] (26a)

z<O

HIc Y[E l + El] (26b)

+ +r +s
2c= -Z[H 2 - H1] (27a)

z>O
+ +r +s
H2c Y[E 2 - E2] (27b)

1.



used for unsymmetrical complementary excitation. In the present situation

the lower signs in (2a) and (2b) are applied to fields (17a) and (17b) for

the region z<O; whereas the upper signs in (2a) and (2b) are applied to (18a)

* and (18b) for fields in the region z>O. Such choice of signs is again neces-

sary to preserve the proper symmetry and behavior at the boundary z - 0 for

the complementary fields. In this way the symmetrical fields for the comple-

*i mentary problem can be represented in the following manner.

+ +i +r +s
Elec - -Z[H I + Hl + H1] (21a)

z<O

4. +1 +r +s
Hlec = Y[El + El + EI] (21b)

+ +i +r +s
- E2ec -Z[H 2 + H2 - H2] (22a) 0

Z>O
+ +i +r +s
H2ec Y[E 2 + E2 - E21 (22b)

Now the formal expressions of the total fields for the original diffrac-

tion problem (associated with a resistive anisotropic screen at z-0, or an

aperture in a perfectly conducting screen which is a special case of the

former) are given by the superposition of the fields (Ila) to (12b) and (17a)

to (18b) in an appropriate manner. Similarly, the formal expressions of the

total fields for the corresponding complementary problem can be obtained by

the superposition of the fields (15a) to (16b) and (22a) to (22b). Let us

" + S +S + + +S +S + + +S +S +
introduce the fields El, Hl, El, 91, E2 , H2, E2, H2 , Elc, HIc, Elc, Hlc, E2c,

-+ + S +S
H2c, E2c and H2c by defining them in the following way.

El  1/2 [Elo + Ele] (23a)

"' +s +s

El - 1/2 El  (23b)

°.10
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4 .r *s
Ele -El + El + El  (17a) Z<c

+ +i +r +s

Hle= Hl + HI + Hl  (17b) J
+ +i +r ;s
E2e = -[E2 + E21 + E2  (18a)

z>O

+ i r +s
H2e = -[H2 + H 2] + H2 . (18b)

The subscript e refers to the even symmetrical fields. Note that

" 01 +i
(El, Hl) is the same field incident from z<O for the unsymmetrical as well as

+i +i
symmetrical excitations. However, when the field (E2 , H2) is incident from

z>O for the unsymmetrical excitation, the corresponding incident field is

+i +i
(-E2 , -H2) from z>O for the symmetrical excitation. Therefore, the total

symmetrical fields have the following properties.

E2et(-Z) - Elet(z), E2ez(-Z), = - Elez(z) (19a)

H2et(-Z) = -Hlet(z), H2ez(-Z) = Hlez(Z) • (19b)

.',.

The even symmetry of (19a) and (19b) implies also the following even

symmetry of the scattered field.

+ S + S ^ S^S

E2t(-z) = Elit(z), E2z(-z) = -Elz(z) (20a)

+ S + AS As
1H2t(-z) = -Hlt(Z), H2z(-Z) HIz(Z) • (20b)

Note that Eqs. (Sa) and (8b) define the even symmetrical solution of

Maxwell's equations.

Corresponding to these symmetrical fields given by (17a) to (18b), we

. need to construct the fields for the complementary problem. This time the

transformation (2a) and (2b) will be applied in a way different from that

9
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Elt(-O) =- 2Z;.[. x H'2t(-O)1 (601i)

E2t(+O) 2ZR-[zo x H2t(+O)l • (60iv)

The relations (60i) to (60iv) are equivalent to the Leontovich boundary

conditions at a sheet with relative surface impedance [7]

= =

n 2; (61)

on each side.
4 4

Let us define [2] electric and magnetic Hertz potentials, (r) and n*(r)

respectively, by the following relations.

When the source is an electric current, we have

(V2 + k2 )I = J/(iwc) (62i)

Efi k2 R + VV-n (6211)

+S +

H = -iWV xR (62111)

* where k2 = w2U•

In an unbounded medium

-(r) = (1/iwe) fff J(r')g(r,r')d 3r' (63)

44

+ + ikir-r- + +
where g(r,r') e /4wir-r"l

-" Similarly,

4 4 .

(V2 + k2 ) f* = M/(ii) (64i)

+s
E iwPV x H* (64ii)

23



+S + +

H - k2n* + VV.* (64111)

R *(r) - (-1/iwe) ff1 M(r')g(r,r')d 3r' (641v)

" Then for a resistive sheet the scattered fields can be derived from (64ii) to

(641v), replacing the volume integrals by surface integral with M(r) =

2M(r') , 2Et(+0) x z0 [see Eq. (43)]. The factor of 2 arises due to the

symmetry properties of the scattered field [1,21. The scattered fields are

* then given by (44) and (45) and the total field can be expressed as in (24a)

to (25b). Using the relations (24a), (25b), (45) and (56b), one can derive

the following integral equation for the magnetic surface current Mt .(-T+
Rt + ++1

(1/2)Y = (1/2)IH 2t(+O) -Hlt(-O)J = H2t(+O) -Hlt(O)
(det R)

Hlt(O) - Hlt(-O) - -Hlt(O) + 2iYk ff + k2 it dxodyo (65)
z4O

-The subscript t in the surface integr,l indicates the transverse com-
+ -+

ponent of the vector quantity. Note that M in (65) is the same as Ms in

(45).

For the magnetically conductive sheet occupying the entire plane z=O and

* characterized by the boundary conditions (57a) and (57b), we assume that the

same field (Eli, Hii) is also incident from z<O. Let us also assume the
+ 4.

- total field (Ec", Hco) in this case satisfies the conditions (57a) and (57b).

-' Then the total magnetic surface current is defined by

M - = (E2tc(+O) -Eltc(-O)] x z0  (67)

- Then in this "second kind" of complementary or dual problem the scattered

field can be expressed by
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Ec ff J*(r') x Vg(r,r')dx'dy' (68a)

i+' S [ + (J*.)Vg] dx'dybH. HC i kY fIf J*g +  k - (68b)

which are valid for both z<0 and z>O. Therefore, the total field in this

situation is given by the following relations for all z.

+ + +

E C Eli +E C(69a)

+ + +S
Hc = + Hc  (69b)

An integral equation for determining this surface magnetic current J*

is given by

YRTJ ++

4 Hlt(0) + iYk ff J*g + k 1  dx'dy • (70)
(det R) t

z O

+ +

If we now set 2M - -J* in (65) and compare it with (70), once again the

relation (59) is obtained. When the condition (59) is satisfied, the two

sets of fields given by (24a) to (25b) and (69a), (69b) are related in the

following manner providing statement of Babinet's principle.

+ + +r

Ec - E1 - E1  (71a)
z<O

+ + + r
Hc - H -H I  (72b)

c El E2 (71c)
z>O

Sc, W I - H2 • (71d)

Note that these relations (71a) to (71d) are different from those given

-* by (28a) to (29b).
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Let us now consider the other type of complementary problem which was

treated in previous sections. In this case, the scattering surface has an

electrical resistivity Z;c and located at z - 0. The form of ;c is shown

in (38). The incident field (E -c Hi) originated in z<O is related to the

original incident field (Eli,Hli) via

+ + i i
Eci =-ZH Hc = YE, " (72)

This means that the incident field (EciHci) can be generated by rotating the

former (El , H 1i) through 900 in the plane parallel to the resistive sheet.

In this situation the total fields (Elc, Hlc) and (E2c, H2c) satisfy the

* relations (56a) and (56b) adhering the subscript c to the field components

and the normalized resistivity. In other words, the impedance boundary

condition is given by (37). The total induced current on the sheet is given

by

-c Zo x [H2ct(+O) - Hlct(-O)] (73)

+" S + S + S +S

" Then the scattered fields (Elc, Rlc) and (E2c, 12c) can be calculated by

using (62ii) to (631v)

Hlc - Jc(r') x Vg(r,r')dx'dy' H2c (74a)

" + s + ( O ) g/ 2  ]s
E ikZ ff [Jcg + (] dV)Vg/kdx'dy' E , (74b)

Therefore, the total field is given by

+. +i +S +
Elc Elc + Elc E2c (75)

+ +i +S +
HIc -

1lc +  
-
= 2c • (76)
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From (37), (74a) and (76), the following integral equation for Jc can be

formulated.

= i . 2] d
J - Hlct( 0 ) + ik If [Jcg + (J V)Vg/ktdxdy YEc t(0) • (77)

z O

If we let

Jc M 2YM (78)

in (77) and then compare it with (65), we obtain again the relation (40).

The fields (75), (76) and those generated by M lying on the resistive sheet

ZR, are related through Babinet's principle stated in (28a) to (29b).

Note that the resistivity Rc has the same relationship to R as does

the magnetic conductivity R* with R.

CONCLUSION

Babinet's principle relates the diffracted or scattered fields associ-

' ated with one diffracting surface to those associated with the complementary

" surface (or screen). It does not, however, state how the fields can be com-

puted in principle. The methods of field computation are provided by the

appropriate diffraction theory pertinent to the problem concerned. For

* example, Collin [3] and Jones [4] presented derivations of Babinet's prin-

ciple without requiring how to compute the fields. On the other hand, Copson

* [1] and Elliott [2) provided the derivation of Babinet's principle as well as

the formal methods of calculating the fields. In doing so, they had to

establish the necessary even and odd symmetrical properties of the various

. components of the electromagnetic fields. Senior [7], in his derivation of

* Babinet's principle assumed the required symmetry of the fields and presented

the formal integral expressions of the diffracted or scattered fields

27

...- . . . ......'-....- ........' .... .... ..............v.-.. . .... . v... . .".",,, ''.



together with the boundary conditions appropriate to a diagonally anisotropic

*. resistive screen.

In this paper, section 3 provides the necessary properties (odd and even

symmetry), of the electromagnetic fields, derivation of Babinet's principle,

"- the boundary conditions appropriate to a general anisotropic resistive sur-

face, which may be inhomogeneous and also the integral representation of

the diffracted fields. In a sense, section 3 is self-contained and offers a

generalization of Collin's method. In section 4, the same problem is addres-

sed with somewhat different viewpoint generalizing Jones' method. It also

rectifies Lang's results. Finally, in section 5 we have extended Senior's

*results to a general anisotropic resistive surface. The resistive surfaces

have applications in reducing undesirable electromagnetic reflections. The

*theory is also valid for a general impedance screen provided a complementary

-. surface of such an impedance screen can be conceived.
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